вход Вход Регистрация



2.1. Показатели качества электроэнергии и их нормирование

Продолжительное время развитие энергетики нашей страны сопровождалось недооценкой, а часто и игнорированием проблем качества электрической энергии, которое привело к массовому возбуждению электромагнитной совместимости электрических сетей, потребителей и энергосистем. Электромагнитная совместимость определяется как способность электротехнического устройства удовлетворительно функционировать в электромагнитном окружении, к которому принадлежат также другие устройства. Качество электрической энергии из года в год ухудшается, тогда как требования относительно ее улучшения возрастают . Сейчас сложилось трудное положение, когда много технологических процессов, например, биотехнологии, автоматические линии, вычислительная, вакуумная, микропроцессорная техника, телемеханика, электроизмерительные системы и т.д. при существующему качеству электрической энергии уже надежно ( без нарушений) работать не могут.

Ведь настало время когда электрическую энергию (ЕЕ) необходимо рассматривать как товар, который при любой системе хозяйничанье характеризуется определенными (специфическими) показателями, перечень и значения которых определяют его потребительское качество.

Качеством электроэнергии (КЕ) есть соответствующая совокупность ее параметров, которые описывают особенности процесса передачи ЕЕ для ее использования в нормальных условиях эксплуатации, определяют непрерывность электроснабжения (отсутствие продолжительных или кратковременных перерывов электроснабжения) и характеризуют напряжение питания (величину, несимметрию, частоту, форму волны). До этого определения нужно добавить еще два замечания.

Во-первых: КЕ в целом выражается степенем удовлетворительности потребителя условиями электроснабжения, которое важно с практической точки зрения.

Во-вторых: КЕ зависит не только от условий электроснабжения, но и от особенностей электрооборудования, которое применяется (его критичности к электромагнитным препятствиям (ЕМП), а также возможности их генерирование) и практики эксплуатации. Последним замечанием определяется тот факт, что ответственность за КЕ должны нести не только поставляющие организации, но и потребители электроэнергии и производители электрооборудования.

Международная электротехническая комиссия (МЕК) разрабатывает и утверждает нормы КЕ трех типов: определяющие, которые содержат описание электромагнитного среды, терминологию, указания по ограничению равной генерирование ЕМП и по измерению и тестированию средств для определения показателей качества электроэнергии (ПКЕ), рекомендации по изготовлению электрооборудования; нормы общие, в которых приводятся допустимые уровне ЕМП, что генерируются или их допустимые уровне в электрических сетях бытового или промышленного назначения; нормы детальные (предметные), которые содержат требования к отдельным изделиям и пристроил с точки зрения КЕ.

Главной организацией в Европе, которая занимается координацией работ относительно стандартизации в электротехнике, электронике и сопредельных областях знаний есть МЕК. Нужно назвать еще и такие международные организации, как Комитет по большим электрическим системам и Союз производителей и дистрибьюторов ЕЕ. Влиятельной региональной организацией, которая занимается нормализацией в области КЕ для стран Евросоюза (ЕС), есть CENELEC. Существует еще ряд международных профессиональных организаций и национальных комитетов, которые разрабатывают национальные стандарты на КЕ, как правило, на основе норм МЕК. Принятие норм происходит, главным образом, методом экспертных оценок, путем голосования.

Нормирование значений ПКЕ относится к главным вопросам проблемы КЕ. Систему ПКЕ образовывают количественные характеристики медленных (отклонение) и быстрых (колебание) изменений действующего значения напряжения, его формы и симметрии в трехфазной системе, а также изменений частоты. Персонал энергетических служб предприятий не может влиять на уровень частоты в сети. Исключение составляют случаи питания от автономных источников, которые на практике встречаются сравнительно редко. Поэтому в дальнейшем рассматриваются только вопросы, которые относятся к КЕ по напряжению.

Принципы нормирования ПКЕ по напряжению базируются на технико-экономических предпосылках и состоят в следующем:

- ПКЕ по напряжению имеют энергетическое значение, то есть характеризуют мощность (энергию) искажение кривой напряжения, степень негативного действия этой энергии на электрооборудование, а эффективность технологических процессов сравнивается со значениями указанных искажений ПКЕ;

- предельно допустимые значения ПКЕ избираются из технико-экономических соображений;

- ПКЕ нормируются с заданной достоверностью на протяжении определенного интервала времени для получения конкретных значений, которые допускают сопоставление.

Система ПКЕ, что базируется на этих предпосылках, может применяться начиная с проектных работ. Она позволяет осуществить массовое метрологическое обеспечение контроля КЕ с помощью относительно простых и недорогих приборов, а также реализовать меры и технические средства нормализации КЕ.

В Украине с 1 января 2000 года введен в действие межгосударственный стандарт ГОСТ 13109-97 “Нормы качества электрической энергии в системах электроснабжения общего назначения”. Стандарт устанавливает показатели и нормы КЕ в электрических сетях систем электроснабжения общего назначения сменного трехфазного и однофазного тока частотой 50 Гц в узлах, к которым присоединяются электрические сети, которые находятся в собственности разных потребителей ЕЕ, или приемники ЕЕ ( в узлах общего присоединения). При соблюдении указанных норм обеспечивается электромагнитная совместимость электрических сетей систем электроснабжения общего назначения и электрических сетей потребителей ЕЕ (приемников ЕЕ).

Нормы, установленные указанным стандартом, являются обязательными во всех режимах работы систем электроснабжения общего назначения, кроме режимов, которые обусловлены следующим:

- исключительными погодными условиями и стихийными бедствиями (ураган, наводнение, землетрясение и т.п.);

- не предвиденными ситуациями, которые вызваны действиями стороны, которые не является енергопоставляющей организацией и потребителем ЕЕ (пожар, взрыв, военные действию и т.п.);

- условиями, которые регламентированы государственными органами управления, а также связанными с ликвидацией последствий, вызванных исключительными погодными условиями и непредвиденными обстоятельствами.

Нормы, установленные этим стандартом, подлежат включению в технические условия на присоединение потребителей ЕЕ и в договора на пользование ЕЕ между електропоставщиками и потребителями. Согласно ГОСТ 13109-97 показателями КЕ есть:

- устойчивое отклонение напряжения dUу;

- размах изменения напряжения dUt;

- доза фликера Pt;

- Коэффициент искажения синусоидности кривой напряжения KU;

- коэффициент n-ой гармоничной составляющей напряжения KU(n);

- коэффициент несимметрии напряжений по обратной последовательности K2U;

- коэффициент несимметрии напряжений по нулевой последовательности K0U;

- отклонение частоты (f;

- продолжительность провала напряжения Dtn;

- импульсное напряжение Uімп;

- коэффициент временного перенапряжения KпepU.

Следует отметить, что рассматриваются два вида норм на КЕ – нормально допустимые и предельно допустимые. Оценка соответствия ПКЕ указанным нормам проводится на протяжении расчетного периода, который равняется 24 ч.

Большинство явлений, которые наблюдаются в электрических сетях и ухудшают качество электрической энергии, происходят в связи с особенностями общей работы електроприемников и электрической сети, их электромагнитной совместимости. Семь ПКЕ в основном обусловленные потерями (падением) напряжения на участке электрической сети, от которой питаются потребители.

Потери напряжения на участке электрической сети определяется по выражению:

Указанные здесь активный (R) и реактивный (X) сопротивление участки сети полагают постоянными, а активная (P) и реактивная (Q) мощности, которые передаются по участку сети, сменными. Характер этих изменений, к тому же, может быть разным, что и побуждает разные определения потерь напряжения:

- при медленному изменению нагрузки согласно его графику – отклонение напряжения;

- при резко сменном характере нагрузки – колебание напряжения;

- при несимметричном распределении нагрузки по фазам электрической сети – несимметрия напряжения в трехфазной системе;

- при нелинейной нагрузке – несинусоидной формы кривой нагрузки.

От тех явлений на которые потребитель электрической энергии влиять не может, ему остается только защищать свое оборудование специальными средствами, например, устройствами быстродействующей защиты или устройствами гарантированного питания.

Ответственность за поддержания напряжения в пределах, установленных ГОСТ 13109-97, полагается на энергоснабжающую организацию.

Отклонение напряжения (ВН) – несоответствие фактического напряжения в устойчивом режиме работы системы электроснабжения ее номинальному значению. Характеризуется указанное отклонение показателем устойчивого ВН dUу.

Отклонение напряжения в той или другой точке сети происходит, как уже отмечалось, под влиянием медленного изменения нагрузки согласно его графику.

ГОСТ 13109 – 97 устанавливает допустимые значения постоянного отклонения напряжения на зажимах електроприйомника. А границы изменения напряжения в точке присоединения потребителя должны определяться с учетом падения напряжения от указанной точки к электроприемника и указываться в договоре энергоснабжения.

Колебания напряжения (КН) – отклонение напряжения, которые происходят в интервале от полупериода до нескольких секунд.

Источниками колебаний напряжения есть мощные електроприемники с импульсным, резкоизменяющимся характером потребления активной и реактивной энергии: дуговые и индукционные печи; аппараты електросварок; электродвигатели в пусковых режимах, и т.п. КН характеризуется следующими показателями:

- размахом изменения напряжения dUt;

- дозой фликера Pt.

Фликер это субъективное восприятие человеком колебаний светового потока искусственных источников освещения, которые вызваны колебаниями напряжения в электрической сети, которая питает эти источники.

Доза фликера – мера восприимчивости человека к действию фликера за установленный промежуток времени. Время восприятия фликера - минимальный отрезок времени для субъективного восприятия человеком фликера, вызванного колебаниями напряжения определенной формы.

Кратковременную дозу фликера определяют на интервале времени наблюдения, который не превышает 10мин. Продолжительную дозу фликера определяют на интервале времени наблюдения, который равняется 2 ч.

Несинусоедальность напряжения – искажение синусоидальной формы кривой напряжения.

Електроприемники с нелинейной вольтамперной характеристикой потребляют ток, форма кривой которого отличается от синусоидальной. А протекание такого тока по элементам электрической сети создает на них падение напряжения, отличное от синусоидального. Это и является причиной искривления синусоидной формы кривой напряжения.

 

 

Рис 2.1. Несинусоидальность напряжения

 

Синусоидальность напряжения характеризуется следующими показателями:

- коэффициентом искривления синусоидальности кривой напряжения КU;

- коэффициентом n-ой гармоничной составляющей напряжения КU(n).

Несимметрия напряжений - несимметрия трехфазной системы напряжения.

Несимметрия напряжений происходит только в трехфазной сети под влиянием неравномерного распределения нагрузок по ее фазам. В качестве достоверного источника виновного в несимметрии напряжений ГОСТ 13109 – 97 указывает потребителя с несимметричной нагрузкой.

Источниками несимметрии напряжений есть: дуговые сталеплавильные печи, тяговые подстанции сменного тока, машины електросавривания, однофазные электротермические установки и другие однофазные, двухфазные и несимметричные трехфазные потребители электроэнергии, в частности быту.

Так суммарная нагрузка отдельных предприятий содержит 85…90% несимметричного нагрузки. А коэффициент несимметрии напряжения по нулевой последовательности (К0U) одного 9 -ты поверхностного дома может составлять 20 %, что на шинах трансформаторной подстанции (точке общего присоединения) может превысить допустимые 2 %.

 

ASYM

 

Рис 2.2. Несимметрия напряжений

 

Несимметрия напряжений характеризуется следующими показателями:

- коэффициентом несимметрии напряжений по обратной последовательности К2U;

- коэффициентом несимметрии напряжений по нулевой последовательности К0U.

Отклонение частоты - отклонение фактической частоты сменного напряжения (fфак) от номинального значения ( fном) в постоянном режиме работы системы электроснабжения.

Отклонение частоты напряжения сменного тока в электрических сетях характеризуется показателем отклонения частоты (f.

Провал напряжения - внезапное и значительное снижения напряжения (меньше 90%Uном) продолжительностью от нескольких периодов до нескольких десятков секунд с дальнейшим восстановлением напряжения.

Причинами провалов напряжения есть срабатывания средств защиты автоматики при отключении грозовых перенапряжений, токов короткого замыкания (КЗ), а также при ошибочных срабатываниях защиты или в результате ошибочных действий оперативного персонала.

ГОСТ13109-97 не нормирует провал напряжения, он ограничивает его продолжительность 30-ма секундами. Правда, провалов напряжений, продолжительностью 30 секунд, практически не бывает - напряжение не восстанавливается.

Провал напряжения характеризуется показателем продолжительности провала напряжения Dtn..

Импульс напряжения - резкое повышение напряжения продолжительностью меньше 10 миллисекунд.

Импульсные перенапряжения возникают при грозовых явлениях и при коммутациях оборудования ( трансформаторы, двигатели, конденсаторы, кабели), в частности при отключении токов КЗ. Величина импульса перенапряжения зависит от многих условий, но всегда значительная и может достигать многих сотен тысяч вольт.

ГОСТ13109-97 приводит справочные значения импульсного перенапряжения при коммутациях для разных типов сетей.

 

IMPULS

 

Рис.2.3. Импульс напряжения

Импульс напряжения характеризуется показателем импульсного напряжения Uімп.

Временное перенапряжение - внезапное и значительное повышения напряжения (больше 110 % Uном) продолжительностью больше 10 миллисикунд.

Временные перенапряжения возникают при коммутациях оборудования (коммутационные, кратковременные) и при коротких замыканиях на землю (продолжительные).

Коммутационные перенапряжения возникают при разгрузке длинных линий электропередач высокого напряжения. Продолжительные перенапряжения возникают в сетях с компенсированной нейтралью, четырехпроводных сетях при обрыве нейтрального провода, и в сетях с изолированной нейтралью при однофазному КЗ на землю ( в сетях 6-10-35 кВ в таком режиме разрешается продолжительная работа). В этих случаях, напряжение невредимых фаз относительная земли (фазное напряжение) может вырастить к величины межфазного (линейного) напряжения.

Временное перенапряжение характеризуется коэффициентом временного перенапряжения Кпер.U.

Нормы приведенных ПКЕ предоставлены в таблицы 2.1. Если изменение ВН и отклонение частоты имеет случайный характер, то требования ГОСТ 13109-97 распространяются на те из них, которые на протяжении расчетного периода имеют интегральную достоверность не меньше 95%.

 

Таблица 2.1. – Нормы показателей КЕ и возможные причины их снижение

Условное обозначение

 

Показатель КЕ, единица измерения

Нормы КЕ

 

ГОСТ 13109-97

Болееимоверная причина

 

нормально допустимые

 

предельно допустимые

Отклонение напряжения
δuy Устойчивое ВН, % ±5 ±10
Колебание напряжения
δut Размах изменения напряжения, % - кривые 1.2 на рис. 2.1

 

Рst

РLt

Доза фликера, видн. од.:

 

кратковременная

продолжительная

 

-

-

 

1.38;1.0*

1,0;0,74*

Синусоидальность напряжения
Кu Коэффициент искривления синусоидальности напряжения, % по таблице 2.1.2 по таблице 2.1.2
Кu(n) Коэффициент n – ой гармоничной составляющей напряжения, % по таблице 2.1.3 по таблице 2.1.3
Несимметрия напряжений в трехфазной системе
К2u Коэффициент несимметрии напряжений по обратной последовательности, % 2 4
К0u Коэффициент несимметрии напряжений по нулевой последовательности, % 2 4
Другие
Df Отклонение частоты, Гц ±0,2 ±0,4
Dtn Продолжительность провала напряжения (Uном £20кВ) - -

Случайная статья

Додаток Г

Прибори та засоби автоматизації Таблиця 1 Термометри цифрові малогабаритні Тип термометра модифікація Режим вимірювання Термоперетворювачі ТТЦ Тип та...
© 2017
  • Сайт "Литературка"
  • мы собираем различную техническую, образовательную, научную литратуру